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ABSTRACT 

 

This effort extends our previous research into the elements of the design of 

manufacturing systems and seeks to separate the effects for the internal elements (those due to 

system design) from the basic elements of external complexity – order variation (frequency and 

size).  Simulation experiments were conducted that included two levels of the external complexity 

to determine the significance and effect of ten elements of complexity resulting from managerial 

decisions relative to the design of the manufacturing system. The results show that the external 

complexity elements dominate the cause of system unpredictability. We also confirm the findings 

from our previous research while discovering the difference in effects of the internal complexity 

factors based upon the amount of variation in the order arrival rate. 

 

INTRODUCTION 

 

Even small production systems are complicated necessitating active management to 

ensure achieving quality and delivery promises that satisfy customers while ensuring 

profitability. How a firm designs it manufacturing system is based upon its understanding of 

market demand and the firm’s competitive strategy. There are many aspects of a system’s design 

that must be established prior to starting production. Additionally, a system’s design may need to 

change over time. These design decisions will likely affect the “complicatedness” of the 

production system, which, in turn, affects the performance of the system and the firm. 

Complexity is a notion synonymous with something being complicated. It can be a result 

of the number of things (Lofgren, 1977; Klir, 1985; Flood 1987), e.g. machines and products. It 

could also be the number and types of relationships between items in the system (Pippenger, 

1978; Simon, 1962). We recognize manufacturing systems are complex by these notions. The 

general effect of complexity is unpredictability (Casti, 1979). For manufacturing systems, this 

might be seen, for example, in the inaccuracy of promised dates. The variety of products in the 

system, which changes from one period to another, and the different product flows for these 

products, are part of the complexity that leads to unpredictability. Management often employs 

time-tested interventions like forecasting, holding inventories, or overstating lead times to hedge 

against this unpredictability. 

Hence, an understanding of the how the choices made in the key elements of a system’s 

design affects complexity is relevant. It is important for managers to recognize the lasting impact 

their decisions can have on performance so they can make the best decisions about the design as 

well as incorporate other management actions needed to achieve the desired performance that 

satisfies their customers. The results of this study will have practical and theoretical value. We 
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hope to elucidate the magnitude of the key structural decisions in the design and management of 

a manufacturing system. By understanding these determinants of complexity, managers can 

better design systems and make critical operational decisions. Theoretically, the results may 

point to factors that are consequential to incorporate in the burgeoning study of supply chain 

management. 

In this research, we examine the effects of several elements of a manufacturing system’s 

design in the context of two forms of external complexity. We do this using a simulation of a 

batch manufacturing system. Following is a brief theoretical background followed by a 

description of the simulation design, the statistical analysis, and concluding with a discussion of 

the results. 

 

BACKGROUND 

 

In our previous research, eight different elements of internal complexity related to the 

design of a manufacturing system were studied. These elements, listed in Table 1, were 

identified from research literature as developed in Gabriel (2013). Generally, past research 

identifies these complexity attributes individually, but little has been done to study their effect on 

performance with more than one at a time. Recent examples include Park and Kremer (2015) 

who studied the complexity caused by product variants, Wan et al. (2012) researching the impact 

of the product variety, and Smunt and Ghose (2016) who evaluated the effects routing 

commonality. 

We again study the effects of the eight elements that we previously tested and include 

two additional internal manufacturing complexity items – unit run-time differences and set-up 

time (see Tables 1 & 2). We do this, in part, because, in our previous effort, the effect of the 

number of work centers in a system was significant, but appeared to function the reverse of what 

was anticipated. It was hypothesized that a batch manufacturing system with more work would 

have a greater amount of routings to be managed, making the system more susceptible to having 

greater variation in flow time, thus greater variation in order lateness and tardiness. This 

unpredictability would be considered the negative effect of the added complexity due to having 

to manage the additional work centers and the greater variety of routings through the system. We 

fathom that the reversed effect could be due to other factors including the extent of the difference 

in run times among the various items produced in the system as well as how significant the 

amount of set-up time is compared to the unit run time. We, therefore, add two additional system 

factors – set-up time and the differences is part-processing times. 

In practice, set-up time has received the particular focus of those espousing Just-in-Time 

and lean manufacturing principles. As a recent example, Phan and Matsuhi (2010) found 

correlation between set-up time reduction and performance factors like on-time delivery, 

manufacturing cost and flexibility, depending on the national context. Set-up time has also been 

a variable commonly included when studying manufacturing systems because it consumes 

capacity and occurs intermittently thereby disrupting process flow. Two recent examples are 

Djassemi (2005) and Garavelli (2001). In his study of cellular manufacturing, Djassemi (2005) 

recognized the potential impact of set-up times by using three levels of set-up times depending 

on product similarity.  Garavelli (2001), in his study simulating a batch production system, 

incorporated a ratio-based set-up time (0 or 30% of processing time). He found that the benefits 
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from system flexibility are significantly different depending on the length of set-up times. 

Systems with high set-up times benefitted less from having additionally flexibility. Since we see 

that the size of the set-up time is a relevant factor that can affect system performance, we 

incorporate set-up time ratio in this study to further our investigation into the results found in our 

previous study. The Set-up Time Ratio (STR), similar to Garavelli (2001), is the amount of set-

up time for a batch of a manufactured item as a ratio to the unit run time for that item. We do this 

because it may be possible that the predictability of flows is different when set-up time is large 

relative to unit run time than when set-up time is short relative to the unit run time. This may also 

contribute to the unexpected effect on the number of work centers shown in our prior study. 

 

 

Table 1 

Elements of Internal Manufacturing Complexity with Definitions 

Internal Complexity 

Element 
Definition 

  

Product Mix The number of end-products produced in a manufacturing system. 

Product Mix Ratio The proportion of production volume attributed to the largest volume end-

product. 

Product Structure Depth The number of levels in a product structure for an end-product. 

Product Structure Breadth The maximum number of manufactured items at a single level in an end-

product's product structure. 

Component Commonality A measure of the shared used of components. 

Number of Routing Steps Number of distinct manufacturing operations that items require based upon 

their manufacturing routing. 

Number of Work Centers The number of work centers in a manufacturing system. 

Routing Commonality A measure of the degree of similarity of routing sequences among 

manufactured items in a system. 

Run Time Difference 

The difference in per unit run time between one manufactured item to a 

different manufactured item. This simply means that one item will consume 

more work center capacity than a different item. 

Set-up Time Ratio 
The amount of set-up time for a batch of a manufactured item as a ratio to the 

unit run time for that item. 

  

 

The second internal complexity factor that has been added to this study is the variation in 

part-processing times between the different items processed in the system. Jarrahi and Abdul-

Kader (2015) found that differences in processing times among products as a key contributor of 

variability in a production system when modeling a production line. Likewise, when developing 
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formulae to estimate production throughput on production lines, Dhouib et al. (2008) also 

incorporate processing time differences among products because they have been shown to cause 

starving and blocking in such systems thereby affecting throughput rate. Similarly, we have 

included Run Time Difference (RTD) - the difference in per unit run time between one 

manufactured item and a different manufactured item. In conjunction with the reasoning of 

Jarrahi and Abdul-Kader (2015) and Dhouib et al. (2008), we conjecture that when run times are 

similar, then the flow of goods may be less complex, that is, more predictable, because flow 

times may be more similar. Because we did not control for this in our previous study, these 

differences in run times may have added noise to the effect of the number of work centers, thus 

confounding the effects. 

 

 

Internal Complexity Element Literature Source

Product Mix Park & Kremer (2015), Wan et al. (2012), Huang & Inman (2010), 

Bozarth, Warsing, Flynn & Flynn (2009) 

Product Mix Ratio Kotha and Orne (1989)

Product Structure Depth Orfi, Terpenny, & Sahin-Sariisik (2011), Fry, Oliff, Minor, & 

Leong (1989), Benton, W. C. and R. Srivastava (1985, 1993); 

Product Structure Breadth Orfi, Terpenny, & Sahin-Sariisik (2011), Fry, Oliff, Minor, & 

Leong (1989), Benton, W. C. and R. Srivastava (1985, 1993); 

Component Commonality Huang & Inman (2010), Song & Zhao (2009), Wacker & Miller 

(2000), Vakharia, Pamenter, & Sanchez (1996)

Number of Routing Steps Deshmukh, Talavage and Barash (1998)

Number of Work Centers Deshmukh, Talavage & Barash (1998), Calinescu et al. (1998), 

Frizelle & Woodcock (1995)

Routing Commonality Smunt & Ghose (2016), Orfi, Terpenny, & Sahin-Sariisik (2011), 

Monahan & Smunt (1999), Bozarth & Edwards (1997)

Run Time Difference
Jarrahi and Abdul-Kader (2015), Dhouib, Gharbi & Ayed (2008)

Set-up Time Ratio

Phan and Matsuhi (2010), Djassemi (2005), Garavelli (2001)

Table 2

Elements of Internal Manufacturing Complexity with References

 
 

 

Additionally, we introduce two forms of external complexity associated with the 

variation related to customer ordering – order arrival rate variation and order size variation. 
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These are included in this study to explore how they might influence the effects that the elements 

of internal complexity have on production system performance. The variation in order arrival 

rate and the variation in order size is considered external complexity because is not under the 

direct control of the management of a manufacturing operation, but these may change how the 

system design elements affect system performance. In recent literature, we see the relevance of 

arrival rate variation. Disney et al. (2006), as they study their proposed inventory ordering 

policy, recognize that reducing the order variability will enable a supplier to be able to offer 

shorter lead-times. This is because the factory can better plan the utilization of its resources from 

period to period. Balakrishnan et al. (2004) develop and test supply chain policies predicated on 

the deleterious effect that customer order variability has on supplier costs where they suppose 

that buffer capacity is required to avoid extended lead times or substantial safety stock holding 

costs. When studying the productivity of manufacturing systems, van Ooijen (2003) recognizes 

that changes in the order arrival rate generally lead to a change in throughput where increased 

arrival rates equate to increased throughput. In their study of the impact of order decisions in a 

two-echelon supply chain, Boute et al. (2007) concluded that a smooth order pattern leads to 

shorter and less variable lead times. 

The variation in order size is not only a reality that manufacturers encounter, but, 

logically, will also affect system performance by changing the capacity demanded to fill the 

orders. System capacity is inflexible in the short-term, so when a series of higher than average 

orders arrive, throughput will be reduced as utilization of capacity approaches or exceeds its 

design capacity. We recognize that supply chain interactions with consumer demand can lead to 

substantial variation in customer-to-supplier order sizes, as demonstrated in the bullwhip effect. 

Therefore, it was logical to also include this factor in our study. 

 

METHODOLOGY 

 

A simulation of the same generic batch-type manufacturing operations as in our prior 

research was used to obtain a sample of data on system performance when the experimental 

factors were altered. It was believed that batch shops would be more likely to experience a wider 

range of the complexity elements that were being investigated. 

In this situation, there were 12 experimental factors. Since our goals were to determine if 

the internal manufacturing complexity elements have an effect when the two external complexity 

factors changed, we used only two levels for all factors. Even by limiting the design to two levels 

for each factor, this would have required 4096 experiments to have a full factorial analysis.  

Since this was not practical to conduct, a fractional factorial experiment was undertaken. The 

result was a design requiring 256 experiments. Each experiment was replicated 15 times using 

the batch means method to obtain independent samples (Schmeiser, 1982; Pritsker, 1986). 

To measure systems performance, the same five measures were used as in the previous 

effort (see Gabriel, 2013). These were the means of lateness and tardiness and the standard 

deviations of flow time, lateness and tardiness. Using mean lateness and tardiness captures a 

firm’s concerns about completing orders too early or late (lateness), and the customer’s desire 
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not to have late orders (tardiness). The measures involving standard deviation cope with the 

general notion that complexity causes unpredictability (Casti, 1979). 

Table 3 summarizes the levels used for each experimental factor. The same settings were 

used for those complexity elements included from the previous research. Products, manufactured 

items, and their associated product structures and routings were generated to achieve the system 

experimental parameters. Refer to Gabriel (2013) for details. Figure 1 presents three product 

structures as examples of the setting for product structure breadth and depth. 

In the case of run time difference (RTD), a uniform distribution with the mean unit run 

time of 0.20 hours was used. For the “low” complexity, the distribution had endpoints of 0.15 

and 0.25 hours. For the “high” complexity situations, the endpoints were 0.05 and 0.35 hours. 

The set-up time ratio (STR) for the “low” complexity cases was set to 0.40 hours, being only 

twice the average per unit run time. The STR high complexity setting was to be 10 time the 

average unit run time, resulting in a 2 hour set-up time. 

As for the external complexity factors, the customer orders arrival rate variation was set 

at two substantially different coefficients of variation, 0.10 and 1.00. The prior study used the 

exponential distribution, but this may have induced large variation that inhibited the analysis 

from detecting variation caused by the experimental factors. In this study, the arrival rate was 

based on a truncated normal distribution (truncated to prohibit negative times). Since the arrival 

rate for each experiment needed to be set “fairly”, the mean arrival rate was set for each 

experiment such that, after conducting pre-trial runs, each had a bottleneck work center with an 

average utilization of 95%. 

Order size variation was set such that there was no variation at the “low” complexity 

setting. In these runs, the order size was always 200 units. For the “high” setting, the target for 

the mean order size was 200 with a standard deviation of 35 using a truncated normal 

distribution (where 0 would be the minimum). Then, the order quantity for each product varied 

based on the number of products (P) and the product mix ratio (PMR) to achieve a coefficient of 

variation of 0.175 (35/200) for the entire order. 
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Table 3 

Experimental Levels for the Complexity Factors 
 

   Levels 

Complexity Factor High Setting Low Setting 

Products – (P) 5 2 

Product Mix Ratio (PMR) 

 
All equal 1 Dominant/Others equal 

Product Structure Depth (D) 

 
5 2 

Product Structure Breadth (B) 

 
5 2 

Component Commonality (CC) 0 % ~30 % 

Number of Routing Steps (RS) 10 4 

Number of Work Centers (WC) 10 4 

Routing Commonality (RC) 0 % ~50 % 

Run-time Difference (RTD) Max. = 0.2 hrs/unit Max. = 0.1 hrs/unit 

Set-up Time Ratio (STR) 10:1 2:1 

Order Arrival Rate Variation (ARV) cv = 1.0 cv = 0.10 

Order Size Variation (OSV) cv = 0.175 None – Constant Order Size 

 

 

One non-experimental factor that could influence system performance was the due date 

tightness factor, because it will affect the amount of lateness and tardiness produced by a system. 

Due dates were set using TWKCP, total work content for the critical path, which incorporates a 

due date tightness factor, k. TWKCP is the sum of all the operation times in the longest chain of 

the product structure. The due date tightness factor, k, was established in trial runs for the 

manufacturing system in the experiment that was deemed to be the “simplest”.  The value for k 

was set such that, after the warm-up period, approximately 30% of the orders were tardy. 
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For each experimental system to be compared fairly, each end-product was assigned a specific 

random number stream to be used in all experimental runs.  This would maintain the identical 

order sequence and quantity for each end-product for experiments having the same settings of P 

and PMR. 

 

The total work content (TWK) method (Goodwin and Goodwin, 1982) was employed to 

calculate the release dates when each order arrived in the simulation. The order release for the 

lowest level component on the critical path of a product structure occurred immediately as the 

order arrived. Parent items in the product structure were released at the time that the last order 

for the required children items was completed.  This gave the manufacturing orders for parent 

items an opportunity to be released early or late, thus providing clearer evidence of the impact of 

system complexity on performance.   

The earliest order due date (EDD) rule was used for scheduling orders at work centers 

with ties broken using the order of arrival to the work center (FCFS).  EDD was shown to 

perform well compared to other rules (Fry et al., 1989), and by using EDD, the primary reason 

for late order completion should be due to the system complexity.   

Other important ystems paraments included the following. All items in a manufacturing 

order remained together for each processing step meaning no “batch-splitting” occurred.  No loss 

of product occurred, e.g., quality failures, so that every order was completed for its entire order 

quantity. Transfer time for moving manufacturing orders between work centers was ignored in 

the simulation.  Each work center contained a single server (i.e. machine).  There was an 

unlimited maximum queue size at a work center. 

E-1 
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C-301 

 

C-201 

C-302 

 

C-401 

 

C-102 

C-202 
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C-203 
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C-408 
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E-1 

C-101 C-103 C-104 C-102 C-105 

Figure 1 Examples of the Simulated Product Structures 
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The fictitious batch manufacturing shop was simulated using AWESIM according to the 

design attributes just described. This is the same simulation used in the prior study except for the 

changes to the arrival rate distribution (as stated earlier) and the addition of the new complexity 

elements. 

Data for every order was automatically captured in a database. To determine the number 

of orders in a replication for all experiments, trial runs were conducted using the “worst case”, or 

most complex, system. It is a common to establish the replication size as the length of time 

needed to clear the transient period. This was then converted to the number of orders by 

multiplying that time by the average orders per hour.  In preliminary simulation runs, the average 

orders per hour were determined in the steady state period. Doing this ensures that the same 

number of orders was evaluated for every replication in every experimental run. To guarantee a 

long enough observation period, the replication size was set to 2000 orders. For each experiment, 

data was collected beginning with order 2001 and ending with order 4000. An interval equal to 

one replication was left between batches where statistics were not collected to maintain 

independence of batches. Hence, for orders 4001 to 6000, data was ignored. Data collection 

resumed beginning at order 6001 through 8000, and so on until 15 replications of data had been 

obtained for each of the 256 experiments. The statistics were accumulated for 2000 consecutive 

orders to avoid censoring data (Blackstone et al., 1982). For example, data was recorded for 

order 4000 even if orders 4001, 4002 and 4003 were completed prior to order 4000. 

 

RESULTS 

 

After completing the 256 experiments, there were 3840 sets of data, each containing 2000 

production orders. The performance measures for each order were calculated and analyzed. An 

initial review of the data revealed that the near normality requirement of ANOVA techniques 

was not met. Transformation techniques were evaluated for each performance measure.  The 

LOG transformation was deemed the best choice for all measures, individually. Similar to the 

previous study, the correlations between the five performance measures, with or without 

transformation, were all very high, all above 0.89. Principle components analysis using SPSS 

statistical software extracted a single factor from the transformed DVs explaining 93.6% of their 

variation. As in the prior study, this factor was named MFGPERF, denoting it as a summary 

measure for total system performance. 

Using MFGPERF as the dependent variable, an ANOVA analysis was performed to 

“screen” the significant effects. Table 4 presents the results. Only three of the complexity 

elements (CC, RS, and CC) were not statistically significant at 0.05 significance. The effect size 

was measured using η2. Although η2 may be distorted by not using a full-factorial model, it is 

still a way to measure relative effect size. In the omnibus model, ARV, arrival rate variation, had 

the greatest effect (0.902), far more than that of the second highest item, D, depth of product 

structure, (0.297). OSV (0.264), B (0.224) and WC (0.211) also had appreciable effect sizes. 

PMR (0.038) and P (0.018) had marginal effect sizes, whereas RTD (0.009) and STR (0.002) had 

no meaningful effect. 
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Table 5 displays the results of the ANOVAs for each transformed performance measure 

excluding the three complexity elements that were not significant in the omnibus test. 

Universally, ARV has the highest effect size regardless of the dependent variable. RTD, and 

STR have no practical significance in any case, having η2 values all below 0.010. Beyond these 

three, the relative effect size for the other complexity elements varies based on the performance 

measure. OSV, the second measure of external complexity, has a consistently high effect size for 

the three performance measures involving variation – the standard deviations of flow time (SFT), 

of lateness (SL), and of tardiness (ST). It had much less effect on mean tardiness (TMEAN) and 

substantially less on mean lateness (LMEAN). 

 

Source

Type III Sum 

of Squares df

Mean 

Square F Significance η2 Sig.

Corrected Model 4,377.33 9 486.37 1,129.87 0.000

Intercept 0.00 1 0.00 0.00 1.000

P 6.15 1 6.15 71.24 0.000 0.0180 *

D 139.36 1 139.36 1,613.88 0.000 0.2970 *

B 95.16 1 95.16 1,102.04 0.000 0.2240 *

PMR 12.92 1 12.92 149.63 0.000 0.0380 *

CC 0.33 1 0.33 3.82 0.051 0.0010 N. S.

RS 0.33 1 0.33 3.82 0.051 0.0010 N. S.

WC 88.63 1 88.63 1,026.43 0.000 0.2110 *

RC 0.03 1 0.03 0.34 0.561 0.0000 N. S.

RTD 3.13 1 3.13 36.30 0.000 0.0090 *

STR 0.51 1 0.51 5.93 0.015 0.0020 *

ARV 3,043.43 1 3,043.43 35,245.00 0.000 0.9020 *

OSV 118.54 1 118.54 1,372.77 0.000 0.2640 *

Error 330.47 3827 0.09

Total 3,839 3,840

Corrected Total 3,839 3,839

Adjusted R Squared = .914

Table 4

Omnibus ANOVA Results

 
 

Lacking results for a full factorial experiment, the effect sizes are difficult to compare 

fairly. In order to get some idea of the relative effect sizes among the complexity elements, the 

rank order of effect sizes was made for each performance measure as shown in Table 6.  Items in 

bold denote that η2 is well below 0.100. One noteworthy generalization from the ranked ordering 

is that P and PMR rank at or near the bottom for the five performance measures. P never has an 

η2 above 0.066. B, D, WC, and PMR have effect sizes very close to each other for TMEAN, 

ranging from 0.125 to 0.159. Another generalization is that D ranks relatively high for most 

performance measures – either ranked 2 or 3 with the exception of LMEAN, where it is ranked 4. 

The marginal means (see Table 7) for each performance measure were evaluated to better 

understand the size and the direction of the effects. Combing these results with those in Table 6, 

we conclude that increased variability in the order arrival rate (ARV) substantially adds to the 

unpredictability of system outcomes, that is, it increases complexity. This is clearly reflected in 
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the relative increase in size of all of the measures of variation, SFT, SL, and ST. Similarly, we 

observe that increased variability in order size (OSV), the other external complexity element, 

leads to greater unpredictability. These were followed by two elements of system design 

complexity - product structure depth (D) and breadth (B). Systems with product structures that 

are wider and/or deeper demonstrated poorer performance (in LMEAN and TMEAN) and well as 

greater unpredictability (in SFT, SL, and ST). 

 

 

Table 6 

Rank Ordering by Effect Size 

Rank SFT LMEAN SL TMEAN ST 

1 ARV ARV ARV ARV ARV 

2 OSV B D B OSV 

3 D WC OSV D D 

4 B D WC WC WC 

5 WC P B PMR B 

6 P PMR PMR OSV P 

7 (none) OSV P P PMR 

 

 

Values in bold are occurrences where the direction of the effect is opposite of what was 

anticipated. As in the case of our prior research, the number of work centers in the system, WC, 

universally had the opposite effect as would be anticipated. As the number of work centers 

increased, the unpredictability lessened. Not only did the mean lateness and tardiness improve, 

there was also smaller variation of flow time, lateness and tardiness. For the number of products, 

P, there were some mixed results. When there were more products being produced by the system, 

the variation in flow time and tardiness shrank, yet the variation in lateness increased. However, 

when there were more end-products, performance worsened (in LMEAN and TMEAN) as 

anticipated. For PMR, it also showed having an opposite effect on SFT. Based upon the prior 

analysis of the effect size using η2, the difference for PMR is considered not practically 

significant. 
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Table 7 

Marginal Means by Performance Measures 

    Performance Measure 

Factor Setting SFT LMEAN SL TMEAN ST 

P 
Few 2,106 1,983 2,015 2,046 1,982 

Many 1,927 2,065 1,868 2,070 1,864 

D 
Shallow 1,431 1,451 1,397 1,483 1,382 

Deep 2,602 2,597 2,486 2,633 2,465 

B 
Narrow 1,563 1,435 1,484 1,484 1,460 

Broad 2,470 2,613 2,399 2,632 2,386 

PMR 
Dominant Product 2,038 2,009 1,913 2,010 1,912 

Equal volumes 1,995 2,039 1,970 2,107 1,934 

WC 
Few 2,498 2,605 2,432 2,630 2,417 

Many 1,535 1,443 1,450 1,486 1,430 

RTD 
Small 1,996 1,974 1,920 2,013 1,901 

Large 2,037 2,073 1,962 2,103 1,946 

STR 
Short 1,964 1,970 1,887 2,003 1,869 

Long 2,069 2,078 1,996 2,113 1,977 

ARV 
Small 305 167 180 223 157 

Large 3,729 3,881 3,702 3,893 3,690 

OSV 
none 1,849 1,987 1,849 2,028 1,833 

Some 2,184 2,061 2,034 2,088 2,014 

 

One of the key questions to be addressed was the impact of the external complexity 

elements, arrival rate variation (ARV) and order size variation (OSV). To do this, ANOVAs 

were analyzed when these factors were excluded and the adjusted R2 were then compared. 

Table 8 reports the results of the different combination of models with and without each external 

complexity element. When no external complexity is included in the model, the internal 

complexity factors only explain 8.8% of variation in MFGPERF as compared to 91.4% when 

both ARV and ORV are included. This indicates that external complexity plays an extremely 

large role in system performance and unpredictability. If only ORV is included, adjusted R2 

increased to 0.119, explaining only 3% more variation than the internal complexity factors. 

Introducing ARV without ORV into the model increased adjusted R2 to 0.883, explaining over 

79% more variation in MFGPERF. This is a clear indication that the arrival pattern of customer 

orders can have a considerable impact on system performance. 
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Table 8 

Model Comparisons 

Model Significance Adjusted R2 

Model without Ext. Complexity Factors < 0.001 0.088 

Model with Order Size Variation only < 0.001 0.119 

Model with Arrival Rate Variation only < 0.001 0.883 

Full model < 0.001 0.914 

 

 

Finally, since ARV had such a huge effect, we wanted to discover how it might influence 

the way the other complexity elements affect performance and unpredictability. Table 9 displays 

the effects from ANOVA models when the results for high ARV were split from the results for 

low ARV. Interpretation of these results must also be guarded because the experiment was 

fractional factorial. Yet, we believe there is value in making some observations at this point. 

Note that based upon adjusted R2, the models explain close to the same amount of variation in 

MFGPERF. The largest change observed is for ORV. When variation in arrival rate was low, 

order size variation has a very large effect on performance, both relative to the other factors and 

relative to when ARV is high. When ARV is high, P, the number of end-products, had no effect 

on performance, but a low amount (η2 = 0.103) when ARV is low. This occurs similarly for 

RTD, the routing time differences from item to item, but the effect size is small (η2 = 0.033) 

when ARV is low. Likewise, the product mix ratio, PMR showed a greater and substantially 

more sizeable effect (η2 = 0.208) at the low level for ARV than at the high level where it had no 

meaningful effect on performance. However, when there was greater variation in arrival rate of 

orders, the product structure elements – breadth (B) and depth (D) – as well the number work 

centers (WC), had a substantial increase in their effect on performance. 
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Table 9 

Effects of Complexity Factors when Arrival Rate Variation is Held Constant 

  Effect (η2 - upper/p-value - lower) Change 

in 

Effect Factor 

ARR Rate CV 

Low 

ARR Rate CV 

High 

P 
0.103 n. s. 

↓ 
(0.000) (0.067) 

D 
0.393 0.487 

↑ 
(0.000) (0.000) 

B 
0.258 0.455 

↑ 
(0.000) (0.000) 

PMR 
0.208 0.008 

↓ 
(0.000) (0.000) 

WC 
0.234  0.451  

↑ 
(0.000) (0.000) 

RTD 
0.033 0.003 

↓ 
(0.000) (0.020) 

STR 
n. s. 0.014 

↑ 
(0.710) (0.000) 

OSV 
0.640  0.002  

↓ 
(0.000) (0.089) 

Adjusted R2 0.777 0.724   

 

 

DISCUSSION 

 

The purpose of this research was to discover how the complexity elements related to a 

manufacturing system’s design affect system performance in the context of differing levels of 

external complexity. First and foremost, we find that external complexity in the form of the 

variation in customer order arrival rate (ARV) and order size (OSV) dominates the explanation 

of manufacturing performance and system unpredictability. Arrival rate variation had, by far, the 

largest effect. When systems cannot anticipate the timing of new orders, the manufacturing 

system’s innate ability to cope with this variation is low, thus affecting predictability of 

outcomes. Additionally, when order sizes vary, this leads to more unpredictability in the results. 

The results from changes in the amount of variation for either (or both) of these showed 

increased lateness and tardiness. We also see more unpredictability as measured by the standard 

deviation of lateness and tardiness. When a firm experiences more variation in lateness, they can 

be excessively delinquent in their delivery to customers or end up frequently holding finished 

goods in inventory until the contracted ship date. When orders complete early, in essence, they 

had used system capacity at a time that was sooner than necessary, possibly preventing other 

items from utilizing resources when needed so that those orders could complete on time. 

Alternatively, it may mean that there is excess capacity that has to exist in order to cope with the 
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unpredictability caused by customer order rates and sizes. For practicing managers, in order to 

moderate the impact of this external complexity, they must employ other management 

interventions like expediting, holding inventories, or using safety stock, all of which increase a 

firm’s costs. Here is the value for adopting top-tier ERP systems that incorporate sophisticated 

algorithms, which are now accommodated by the availability of affordable modern computing 

power. In addition, the results regarding external complexity lend credence to the continuation of 

research into order planning, order release, scheduling, and batch-sizing. Further study of how 

these effects can be mitigated through integrated supply chain planning is also justified by our 

results because suppliers will need to be prepared to cope with the same unpredictability that is 

due to the external complexity because that will naturally flow to them. 

Additionally, when controlling for external complexity, we confirmed which of these 

system complexity elements influence performance. The main things for managers of firms to 

consider are the depth and breadth of their product structures, and to a much lesser degree, the 

number of products they offer and the mix of products. This concurs with our previous results. 

The depth of a product structure is a result of the amount of backward integration a firm commits 

to do. The negative impact to performance of the local system by producing items deep into the 

end item’s product structure (backward integration) may justify outsourcing.  In this research, we 

did not study the affect that supplier deliveries might have, but an alternative to backward 

integration is to outsource to external suppliers. It also confirms to managers that there is a 

tradeoff. Backward integration grants more control of supply to a firm, but may require firms to 

invest in “buffer” capacity as the additional complexity necessitates this extra capacity in order 

to maintain lead times and meet delivery promises. This comes at additional costs. 

As far as the breadth of the product structure, again, this is problematic when a firm is 

committed to produce such a number and variety of items internally that eventually get 

assembled into their end items. Outsourcing some manufactured items can reduce the effects to 

performance that results from having so many items competing for system resources. We also 

observed that the potential for product structure breadth and depth to negatively affect 

performance and increase unpredictability is exasperated by variability in order arrival rates. 

Meaning that managers cannot neglect to consider this aspect of customer demand when making 

insource/outsource decisions. This is also something for researchers to consider as they study 

areas related to system design. 

In addition, component commonality and routing commonality showed no meaningful 

effect on system performance. This is also in-line with our previous research, now confirmed 

after accounting for external complexity.  

This research sought to identify attributes of a system that management controls that have 

an impact on system performance excluding most common interventions by management. We 

excluded using forecasting, holding inventory, including safety stock or safety lead time, as well 

as advanced methods to schedule orders. Clearly, the purpose of these is to allow a system to 

cope with external (and internal) sources of variation to lessen their effect on performance, 

especially as experienced from customers These must be employed to operate viably in a 

competitive environment. 
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Even after this second research into the system elements of complexity, there is no 

obvious reason for the effect observed for the number of work centers. Having a greater variety 

of work centers for processing the variety of manufactured items, while attempting to hold 

utilization constant, seemed like something that would lead to more variation in performance. It 

was expected that the standard deviations of flow time, lateness or tardiness would increase 

when greater variety of work centers existed. It did not function as expected even when 

controlling for the external complexity items (order arrival rate and order size variation) and for 

routing time differences (RTD) and set-up time ratio (STR). Recall, these were included, in part, 

to try to account for this unexpected result. That did not occur. In fact, routing time differences 

and set-up time ratio has no practical effect while the number of work center has a sizeable effect 

on performance in the opposite direction. No obvious explanation is available for this. 

From these results, we have now identified, through confirmation, the primary strategic 

and tactical elements in manufacturing systems that affect performance to the customer through 

longer lead times or late deliveries. At the same time, we noted items that appear to have little 

impact (for batch-type manufacturing systems). This gives direction as research continues in 

strategic supply decisions like insourcing versus outsourcing by the effects demonstrated 

especially by the breadth and depth of products structures. 

CONCLUSION  

 

A study was conducted to investigate the proposed elements of internal manufacturing 

complexity under two levels for two attributes of external complexity – variation in order arrival 

rate and variation in order size. The results indicate that the amount of variation in the order 

arrival rate has the largest effect on the performance measures included in this research. The 

variation in order size also played a very significant role in system performance and 

unpredictability. Additionally, the findings from the prior research effort regarding the relevant 

elements of internal complexity were confirmed. The breadth and depth of the product structure 

are important concerns for a firm to reflect upon when evaluating causes of performance 

variation. 

The generalization of the findings, of course, is limited by the research design. A batch-

type system was simulated, so these conclusions might not be true for assembling line or 

machine shop type of systems. Additionally, only two levels of each factor were simulated 

because it was impractical to be able to perform all possible permutation of experiments even by 

confining the study to having two levels for each. Also, the high settings for number of products 

was relatively low. Yet, there was statistical significance. We believe this is an indication that 

this factor is something important as a firm considers expanding their product line. Another 

limitation was that a full factorial ANOVA was not used. Due to the extraordinary number of 

simulations that would have been required, a fractional factorial design was used. Some of the 

analysis, especially when focused on evaluating numerical effects, is susceptible to error due to 

lacking a complete set of combinations of factors. It also eliminated the opportunity to evaluate 

interactions among factors. These are significant limitations that might be addressed in future 

research. 
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Further research into the effect of the number of products in a portfolio is recommended, 

since five was the largest considered herein. It may be that this has a more dramatic effect than 

was estimated in this research. The interactions among factors, especially with the external 

complexity factors could be considered. In addition, rooting out the reason for the reverse effect 

of the number of work centers is of interest. 

REFERENCES 

 
Balakrishnan, A., Geunes, J., & Pangburn, M. S. (2004). Coordinating supply chains by controlling upstream 

variability propagation. Manufacturing & Service Operations Management, 6 (2), 163-183. 

Benton, W. C. and R. Srivastava 1985. Product Structure Complexity and Multilevel Lot Sizing Using Alternative 

Costing Policies. Decision Sciences 16 (4), 357-369. 

Benton, W. C. and R. Srivastava 1993. Product structure complexity and inventory capacity performance of a multi-

level manufacturing system. International Journal of Production Research 31 (11), 2531-2545. 

Blackstone, J., D. Phillips, and G. Hogg (1982), “A State-of-the-Art Survey of Dispatching Rules for Manufacturing 

Job Shop Operations,” International Journal of Production Research, 20 (1), 27-45. 

Boute, R. N., Disney, S. M., Lambrecht, M. R., & Van Houdt, B. (2007). An integrated production and inventory 

model to dampen upstream demand variability in the supply chain. European Journal of Operational 

Research, 178 (1), 121-142. 

Bozarth, Cecil C., Donald P. Warsing, Barbara B. Flynn, and E. James Flynn (2009), The impact of supply chain 

complexity on manufacturing plant performance, Journal of Operations Management, 27 (1), 78-93. 

Bozarth, C. and S. Edwards 1997. The impact of market requirements focus and manufacturing characteristics focus 

on plant performance. Journal of Operations Management, 15 (3), 161-180. 

Casti, J. L. (1979), Connectivity, Complexity, and Catastrophe in Large-Scale Systems. Wiley, New York, NY. 

Calinescu, A, J. Efstathiou, J. Scirn, and J. Bermejo (1998), Applying and assessing two methods for measuring 

complexity in manufacturing, Journal of Operational Research Society. 49 (7), 723-733. 

Deshmukh, A. V., J. J. Talavage, and M. M. Barash 1998. Complexity in manufacturing systems, Part 1:  Analysis 

of static complexity. IIE Transactions, 30, 645-655. 

Dhouib, K., Gharbi, A., & Ayed, S. (2008). Availability and throughput of unreliable, unbuffered production lines 

with non-homogeneous deterministic processing times. International Journal of Production Research, 46 

(20), 5651-5677. 

Djassemi, M. (2005). A simulation analysis of factors influencing the flexibility of cellular 

manufacturing. International Journal of Production Research, 43 (10), 2101-2111. 

Disney, S. M., Farasyn, I., Lambrecht, M., Towill, D. R., & Van de Velde, W. (2006). Taming the bullwhip effect 

whilst watching customer service in a single supply chain echelon. European Journal of Operational 

Research, 173 (1), 151-172. 

Flood, R. L. 1987. Complexity: a Definition by Construction of a Conceptual Framework. Systems Research, 4 (3), 

177-185. 

Frizelle, G. and E. Woodcock (1995), Measuring complexity as an aid to developing operational strategy.  

International Journal of Operation and Production Management, 15 (5), 26-39. 

Fry, T. D., M. D. Oliff, E. D. Minor, and G.K. Leongs (1989), The effects of product structure and sequencing rule 

on assembly shop performance. International Journal of Production Research, 27 (4), 671-686. 

Gabriel, T. J., “Manufacturing Complexity: The Effects of Common Attributes of Manufacturing System Design on 

Performance" Academy of Information and Management Sciences Journal, 16, 1, 2013, 75-97. 

Garavelli, A. C. (2001). Performance analysis of a batch production system with limited flexibility. International 

Journal of Production Economics, 69 (1), 39-48. 

Goodwin, J. S. and J. C. Goodwin 1982. Operating Policies for Scheduling Assembled Products. Decision Sciences, 

13 (4), 585-603. 

Huang, N., & Inman, R. (2010). Product quality and plant build complexity. International Journal of Production 

Research, 48(11), 3105-3128 



Global Journal of Management and Marketing   Volume 4, Number 1, 2020 

68 

 

Jarrahi, F., & Abdul-Kader, W. (2015). Performance evaluation of a multi-product production line: An 

approximation method. Applied Mathematical Modelling, 39 (13), 3619-3636. 

Klir, G. J. (1985), Complexity: Some General Observations. Systems Research, 2 (2), 131-140. 

Kotha, S. and D. Orne 1989. Generic Manufacturing Strategies: A Conceptual Synthesis. Strategic Management 

Journal 10, 211-231. 

Löfgren, L. (1977), Complexity of Descriptions of Systems:  A Foundational Study. International Journal of 

General Systems, 3, 197-214. 

Monahan, G. E. and T. L. Smunt 1999. Processes with nearly-sequential routings: a comparative analysis. Journal of 

Operations Management 17 (4), 449-466. 

Orfi, N., Terpenny, J., & Sahin-Sariisik, A. (2011). Harnessing product complexity: Step 1—Establishing product 

complexity dimensions and indicators. The Engineering Economist, 56(1), 59-79. 

Park, K., & Kremer, G. E. O. (2015) Assessment of static complexity in design and manufacturing of a product 

family and its impact on manufacturing performance. International Journal of Production Economics, 169, 

215-232. 

Phan, C. A., & Matsui, Y. (2010). Comparative study on the relationship between just-in-time production practices 

and operational performance in manufacturing plants. Operations Management Research, 3 (3-4), 184-198. 

Pippenger, N. (1978), Complexity Theory. Scientific American, 238 (6), 114-125. 

Pritsker, A. 1986. Introduction to Simulation and SLAM II.  John Wiley and Sons: New York. 

Russell, R. S. and B. W. Taylor (1985) An Evaluation of Sequencing Rules for an Assembly Shop. Decision 

Sciences, 16 (2), 196-212. 

Schmeiser, B. 1982. Batch Size Effects in the Analysis of Simulation Output. Operations Research 30 (3), 556-567. 

Simon, H. (1962), The Architecture of Complexity. Proceedings of the American Philosophical Society.106 (6), 

467-482. 

Song, J. S., & Zhao, Y. (2009). The value of component commonality in a dynamic inventory system with lead 

times. Manufacturing & Service Operations Management, 11(3), 493-508. 

Smunt, T. L., & Ghose, S. (2016). An Entropy Measure of Flow Dominance for Predicting Operations Performance. 

Production and Operations Management, 25(10), 1638-1657. 

Wacker, J. G., & Miller, M. (2000). Configure-to-order planning bills of material: simplifying a complex product 

structure for manufacturing planning and control. Production and Inventory Management Journal, 41(2), 

21-26. 

Wan, Xiang, Philip T. Evers, Martin E. Dresner (2012), Too much of a good thing: The impact of product variety on 

operations and sales performance. Journal of Operations Management, 30 (4), 316-324. 

Vakharia, A. J., D. A. Pamenter, and S. M. Sanchez (1996), The operating impact of parts commonality. Journal of 

Operations Management, 14 (1), 3-18. 

Van Ooijen, H., & Bertrand, J. W. M. (2003). The effects of a simple arrival rate control policy on throughput and 

work-in-process in production systems with workload dependent processing rates. International Journal of 

Production Economics, 85(1), 61-68. 

 


